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On _the distribution of products of independent Beta varisdbles.

by
]
Z, A. Lomnicki
Boulton Paul Aircraft Ltd, Wolverhampton, England

and University of Washington

1. Introduction,

In a number of applications it is necessary to knov the properties of
the product of random variables; this occurs in particular vhen the random
variables involved have dimensions of a ratio like tolerance expressed in
percentages of desired values, fuel consumption per mile, smplification
ratios, etc., The special situation discussed in this paper of the product
of a number of independent identically distributed random variadles arises
for instance in the case vhen some devices designed to emplify a magnitude
and having identical characteristics are connected in series. If x; is the
random variable describing the amplification by the (th device the total
amplification X* X, X;... X»,  {s also & random variadble and it is important
to knov the distribution of this product.. Examples of engineering app).ications
involving products and quotients of random variables can be found,for instence,

in Donahue [4].
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It was shown by Springer and Thompson (9] how to obtain the probability

density function (p.d.f.) of products of " independent, identically
distriduted random variables by the spplication of the Mellin transform;

1
:

they have obtained smong Others formulee (in the form of rapidly convergent
infinite series) for the p.d.f. of the product of n independent normal
variates and w Cauchy variates and treated also a special case of Beta )
variates [eee belov formula (7)]. Their method is a generalization to %

factors of & method presented by Epstein [5] for ns2 . Polloving Epstein

many authors applied the Mellin transform to the study of distribution of

products and qaotients of random variadbles; a detailed bibliogrephy can be

found in Springer and Thompson [9) and [8); cf. also Kotlarski (6] end

Zolotarev [10]. 4

|

The Mellin transform of a function ft"') vhere X)0 1is defined as
W  Mlfeols] » et
0

Under certain regularity conditions [c.f. Courant-Hilbert [3) pp. 103-105) 1
this transform considered as a function of complex variable 5§ admits an

inversion integral:
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(2) f(xj - Txi /1 M[f(x)/:] ds >0
c-iw0
vhere the path of integration is a line parallel to the imaginary axis

and to the right of the origin,

An immediate consequonce of the definition of the Mellin transform is
the following multiplicative property: If X and y are independent random
variables with the p.d.f.'s f(-l) and 9(y, respectively and if h(z)

is the p.d.f. of Z* Xy then
(3) M[A'(z)/-‘] = M{finls]. M[y(y//:].

Thus to find the p.d.f. of ys X Xi... Xy where X; are independent identically
distributed random variables with p.d.f. fl.z) it 1s sufficient to find the
Mellin transform of f( x) , to take its 7 th powver and to find the inverse

vith the aid of formula (2).

The following property of the Mellin transform will be needed later

in the discussion of the probability distribution function of the product:

Ir f(x) i3 the p.d.f. of the raniom variable x vwhich has finite

second moment and if

Fle)= [fe)at Fixye [rimat « 1-Fix),




Page U

then the Mellin transform of ﬂx) is equal to

w H[Sems] = [Hottn = S5l e fota = £ [feolse],

the vanishing of the term ,"xfg'(;) vhen X - % folloving from the

existence of the second moment,

It has been shown by the author of this report (7] that the results
obtained by Springer and Thompson in (9] for normal random varisbles can
be presented in a somevhat simpler form and that a general formula for
any number of factors can be given (st11l rather unwvieldy in the case of
large values of nv/). It has been also shown that by a direct application
of the Mellin transform similar infinite-series expansions can be derived
for the corresponding probability distribution functions; this is useful
since it is not alvays easy to obtain them by the straight-forward integration
of the relevant infinite series representing probability densities. Finally,
attention has been drawn to the fact implicit in the Springer-Thompson
treatment that it is sufficient to evaluate the formulae for the p.d.f.
of the product of independent exponentially distributed random variabdbles
and from such tables the p.d.i1. for products of gamma, normal and Weidbull

random variables can be quickly evaluated by simple transformations.

& _l‘..-'l_ -
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The practicel usefulness of the results described adbove is limited by
the fact that all the corresponding distridutions have infinite ranges
vhile the physical devices t0 vhich our mathematical models are to be
applied often have finite characteristics. Thus, the problem arises t»
vhat extent the methods applied in the above-quoted papers can de modified
to obtain similar results for random variables having finite ranges and
the first family of rendom variadles viich suggests itself and seems to de
tractable in this vay is the family of Beta distridbutions with parameters p,
9 i.,e, the random variadles having p.d.f.:

(5) ﬁ[x; my) = BTrg) xP'(1-x)? I»x%0, p2!, 921,

vhere 8(/,4) 1s the Euler integral of the first kind:

6) B(r.9) = f;’"'(’-xj""‘x = [0 7(3) /" (r+y).

Notice that iu (5) both / and 9- are assurmed to be not less than unity;
for p or 9. less than 1 the p.d.f, would exhibit an infinits jump at

X=0 or X=4{ and the inversion forsula (2) would not be applicsble.

This 1s not & serious limitation since those "U" and "J" -sheped distributions
are of negligible practical importance.
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Springer and Thompson [9) gave an explicit formuls for the product
of % independent Beta random variables of a special class i.e. of Beta

variadbles vith paremeters p =¢4/, ¢ = 1 defined by the p.d.f.

(1) Sxwrni) = &) 2% 0sx$/ , «d0,

vhich they called "monomial" distributions; the rectangular distridbution

is a member of this class for @ = 0,

In this particular case the spplication of the Mellin transform gives
an imediate answer. Thus

(8) M[ S(x; @4, 1)) l]‘- @+ _‘/a.’“.}.',. s (wtd) (Sva)™

The Mellin transform of the p.d.f. of the product of 7 independent random
variables of that kind is equal to

oy M ntxiarni)is) = o sy

! But the inverse Mellin transform of (§+% ).." can be found in tables

(see e.g. Bateman Manuscript (2], formule 7.1 (16)) so that
,'(ot-n/"'.z“k—log.x,/n-’,."/'("/j-/ ir .7(1.51’

(10) '5~(x‘- w+i,1) = ;
L i¢ x21.

T
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There is a wide-spread belief among working statisticians that the
problem of the distribution of products of independent random variadbles
is not of a very great interest since "one can alwvays find the distribution
of Y= logx, apply the theorems on the addition of indeperdent random
variables Y, = log X; and then revert to the product of the x's." It
happens so that in the above particular case this procedure works and the
application of the Mellin transform (although very attractive) is not
essential. Indeed, if we put Y= logX then it follows from (7) that
the distribution of y given by the p.d.f. j(y/ is the negative exponential
distribution with parameter A = x+/ :

- ylxe1)
Floy =+ €
and it is well known that the sum of " independent random variables of
this kind g a gamma distribution with the shape parameter n and the
scale parameter %*/ g0 that = -
fug = wryve” Syl oy
Putting x = exp (-y) we obtain . e .
st - ooy x oS

which agrees with (10). However, this seems to be an exceptionally simple
situation and in more general cases the passage through the distribution of

the sum of logarithms does not make the problem any easier,
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2. Probability demsity function of the product of Beta variables.

2.1 Simplification of the problem
The Mellin transform of (5) is equal to

’ ’
(11) H[/"(*m’)/‘] = /‘NS-"("‘/,':"/BMJ = B(pes'9)/8(19) =
= [(pesyfipg)/(Pip+971-1). rir -

Denoting by  3a(¥iAy) the p.d.f. of the product of » such independent

random variables we have, in view of (3):

1 L
g2 M[&(x,,,,,// 0] = Pty (b, 1 L7049 ]

Coim

/ix,"/'?/:ﬂ-y/""(ﬁrf!“)] ds =~ 0.

and (2) yields: rnsg) L
Zﬁi‘

SnXS biy) = MMn)

-1 0d

On substitution ? *J¢+~»-/ this becomes:

Coro
Poes) 2 4EPNE /Pty bt 50,

————

(13) Snt 29 = F~en)” AW oju

the path of integration being still a line parallel to the imaginary axis

and to the right of it since /> > 1. But the above formula can be rewritten

Cvio®
o PUptss ot T [ (ot P Pty f R oo
v i "J' ﬁl*j = /'ha)’.(qf’/ z" C"’.~

which, in viev of (13) vith p = 1 gives

linty) e p-l
. - J£ 3 L) 'ZJ 3
(14) In(Xir, ) = Fir, Tiyry, Xi ¥/




2,2 The case of an integer 2 .

From (12) ve have

asy MIpnexitiaaps = Pl ws [0

But with an integer 9
l‘w-ﬂj = (.;4-:—1)('}*1-4’.)... .78y

80 that
’—I
" =
' - ) I (54&
(16) ML!-"\l-!a‘/)//"J = P(" jk“ 8
and the inverse formula yields
C‘l'“ ,-'

~$ f4k d.f
;4 g = [(a et z i/ X //( j
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This shows that it is sufficient to evaluate the p.d.f. of the product of

W random variables of a family of one-parameter Beta variables having
=1 and arbitrary ¢ 21; for /2> 1 the relevant p.d.f, are obtained
by the above simple transformation. In the subsequent two subsections we
shall discuss the derivation of the p.d.f. /3 » (%X, 4,9/ separately for the

case when 9 is an integer and the case vhen it is not an integer.

e
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The integrand in (17) hes 9 poles of the nth order for S = -j
(U=o,!, ..., 9=/ / and the integral can be evaluated by contour integration

yielding _
r"‘cwjz Rix;n, /) for 0<x& 1/
Joe

(18) /3’\-[:&' 1,9)= /
0 for X/,

vhere

W) =y -
L 4 [x"wjj'}h“k/'//'

(19) R(=x nJ))= (n—-—u.' e-t—f_“-" Leo /'(-./'

is the residue of the integrand of (17) at the "nth-order pole at f= -/' .

(For the details of contour integration see Appx para (a), (b), (c)l.

,. ,-I
)
Let us write lj] %4 for the product of (¢-/) factors 37 “l/ <
(Y t{ ]

(1.e the product in which the /'th factor has been omitted) and similariy

] o
<l ;

5o 4 for the sum in which the / th term has been omitted. Denoting by
0

G‘/-(.S)the function in the brackets in (19) we have

) AP
- 5 (/).!*i -n
(20) 6-(!/ = X ‘ﬁ]‘ (Stk)




.
£
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Before attempting to give a formula for arbitrary integer 4 let us
discuss tvo simple cases of g- l and §= 2. For g 1 we have to consider

only one pole and its residue, Here (20) reduces to G(‘j -I-‘, and (19)

gives , - Sy ’ o
&(xJ-uJO/ =L~._'J'l X (“logx) /."‘ = "—’J_. / 108”)
8o that
’ ne=/
(- e for 0<x &1,
o (x; 4, L) =
(a)/n[‘ ' 0 for 23 L.,
From (1b)
n-/
//’ L (n-u’(-lo"x.) for 0‘4.&1.’

z2) Sdn(xip.i) -
( Vo) for X2 1-,
which agrees wvith (10) vhen p = a+d,
For 4 = 2 we have to consider two residues for /'- 0 and /'- 1 at the
poles $= 0O and §=-1. Formula (20) ylelds
-3
Go(s) =X (se,"™ G (5" 48

-n

while formula (19) glves

A% #,0) =L'i’717’ 3-‘1-,{-! L uf/"°

A2 NI =t i
xs
A(X ", U'(n-u e 1 f/ s

Applying the Leibniz formula for the (»-' )th derivative of the product we find

"~/
L insk
¥ = -2 (¢) _
/im0

S =" -/ nel In-k

Atx;n,0)= "")’E Lk/l ( Os,xjc / ov( #)...(
. K SRV

N ( y

</ !
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¥ -1-4 P
R(x:n L) = (n /)’ Z-L“/‘t (=102 &), "-) n(nel & y A=/
) ?"' n-t (@7~ -k- 2.) - 1o, "/‘.L"“'L.

€ (;:-I).'l/ c_‘. L\ 'l

L ]

Hence , - 4 kv
‘.
vecln-k ol oy [l-f("’ / 0<xs/
X "tg‘,\ At 4 k!t ) /s '
‘ . - \ b
2 :‘Q'\,"J. Yoien - i
(23) for x9d ,

(U

Thus, in the two cases y = 1 and o= 2, an explicit formula for
3.,&; s 7, has been given., For higher values of ) 2 the application of the
Leitniz rule would lead to formulac which wouia become more end more
complicated and it is suggested to take adventsye of the fact that the
logarithaic derivatives of (20) can be easily obtained; once they are found
the problem is solved since it is known how to obtain the nth derivative
of & function from its logarithmic derivatives., Indeed, if

A _ Ar) P
(24) 4‘1{, 5 [log 5.,.»/_,‘ and "'l.-‘/ - d:" '4[ /

then
~o / Oy
(25) ‘t. roe, < Ty Z,._ L/Aw/*w, oo R (CS)
where
<’ w’ f-oyk.//fw/h /oy e
,4“'9 - ’/ n/ Wb, 11 g7 4 AL
(26) Zait A, S S R XA AT AL
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here the sum is extended to all the partitions of number 7 such that

(o)

r)
nsz n,t,'ngl;.*...ﬂ\rlr 3" denotes '4'(3_) and g the 7 th derivative

of /"1‘)v1th respect to § .

Clearly,

(268) Z,= A4,

(26b) 2, = A‘r/}")

(26¢) Z, = #3444 +

and further formulae can be derived recursively by applying

(27) an-/"‘ AZ,‘#-ZA_’

(cf. for example [7]).

In our case 6'1-‘) is given by (20) and

| hddpy
YyJ
(28) ‘on, Ej(3) -5 x=n k tor (3+ky .

— -

it St e s
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The logarithmic derivative of (20) is -
-l
4}' (5) = ~ logx ~ oL U'@.,.‘)
and %—: ) -(rv)
4(:; = (=) nr! /(f £) (rett ).
Since, according to (19) these derivatives are to be taken for § = —,
g-
we have v/
)
(’;l T 47... // ’
(/l
A—,’t'j/ n —log 4. - N é//
(29) ;:_ 7 (r#1)
) r~ey / z v/ e
Y 7 B % AN f
// e 4so 2

and the final formula for the p.d.f. of the product is:

iy) =0 u”'(7*’)§_ "’fvd// Z- j /,/---, ’&'(w],

(3)) 135‘-; . J=e
wvhere the arguments of the .Z ~function are given by (29).

Exemple, In the case of a rectangular distribution p= g = ],

-4 .
Golssz &, log ba, == 10k x Ay (i) = —1log x,
her

all the derivatives of 4, (4 with respect to J vanishing. Hence [',-, + A
1,4
and (3\(.*‘ ” _} ey (-logx), vhich agrees with (21),

Example. In the case p = 1, 9 = 2 it is easy to verify that

il Ser - kal

8
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)
6[‘) = x"(ff,j""‘ h(1)® —10g x ""l’"j." ‘:.’(f)"tf,llffy l.,)m
6;(1) s xfs™ , “;/‘j s -logx ns” , 4/0[1}. lf.’.f.,"‘)('/)(”’)

Substituting S= O 4in the first line, S = -1 in the second we have
Golo)= 1, . ABol0] v =108 x = n ) 4."’(0/ - n,r:’(_-lj"'
‘,l"j s x(-), 4, ("’j « . log X +h, 4’"‘{./} = nr'!

Pormula (30) and (26a) gives for n. = 2:

w0 o 0= 4o e,

and formula (30) and (26b) gives for n = 3: L

I.' & - 1
(32) pl().; 1,2} - lf!t"u’u"‘} *3 -.t[(-los.z o-.ij‘-r ij; l
these results can be verified by putting = 2, m= § ate. in (23). J

2.3 The case when 9 is not an integer.

From (12)

(330 M[Aix:t.32]s] =70 laru 1)

and
Core
4 [l .,
(3‘&) -"u(.x, 1;1/ /' L‘ffb’ .’Iu[ ,r(‘f'bu o, .4{5 , ¢S

Here the integrand has an infinity of poles of the Xth-order at f=-/

(71 0,1,...) and the integral in (34) can be evaluated by contour

integration yielding
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r‘(Q"'J)Z-— /Y(xi "J/'j for o<xe),
(35) ,51»1":' Ly)=
0 tor X% 1,

vhere

dn-'{ -3 _’.'_Z{L. (Hj)b‘j fe-

. ’. Y
(36) R(6 ")) = 503! age Phle+s

is the residue of the integrand of (34) at the nth-order pole at (= - ./' .

(For the details of contour integration see Appx paras (d4) - (3§)]. Clearly

r{s+)+1) .
PSI(S* ) = woj-igtag-ty=. 877 ° Fravsy A j—[“/‘/ ()=t )

and for /' = O the above identity is still valid if we agree to interpret
-t

the "empty" product ‘75 as unity., Hence

R
) p/ SP e by /""(71»:.)}/- (stk) f (.
(37) R[xo'hajj Lh-l) ds 7 * 4 ko /‘=-/

Denoting by G-U) the function in the brackets in (37)
ve have . A £l -a
6.(0-.-_""/‘\(!*/*{/,' (’f.{jlz:{-lf/()

jat

log C,'t!u = -Slogx + nlogl(s¢/+) —nlogr(‘)"}-nglog (stk)

-f
(interpreting again the "empty" suu I‘Z_. as zero to retain the validity

of the above for / = 0.)

The successive logorithmic derivatives of 6/'( §) ave
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4,'(3')‘ - logx +n y[“j*lj -n y(qnj -n 2 (1ek)"'
'4/"(:) - np(14)+1) - hP(?*U +h WAJ' Z o
(38) 4/9';,) < nptliej4) -ny (9#) t¢ ’J r. (‘*‘J
where q(.) denotes the logarithmic derivative of f[) (the Euler "P!!i"-funcuon)

{
and Y')(-) {ts successive derivatives.

Consequently )=t o JL"’ I~
@[-/) = ng[‘// /,/”// o 'Tj_—/z':z,/) y)

(39) ‘J('/l = = 108 3+ ny(V "’l.rl’-'lj v n. = A-')
r)

(v,
A )) = ny () - ny(9-)) + nr.'é £,
and by the argument which has been applied in derivation of formula (30)
ve have

@3y
+/)Zx (/-;)I'J"(?j Z,,/ /4 AL ' ./J

(wo) Prlxid,1)* (n-/)’

vhere the values to be put into Zu-: -function are given by (39).

The infinite series (4LO) is absolutely convergent for O <X< 1, Indeed, f
the coefficient r ‘[7”) 0’/ r z;’/') is equal to the 7 th power of
G -%‘—?——%’J (j=0,1,...). For j=0,1,..,(3] there are[y)+ 1
positive values of @ ; let  be their maximum, For /. >[(3)+1, /-z;-.’

(-9)/f <1 sothat [8;/ < Q. PFurther, the values to be put into the
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. ,=function are given by (39) and since g is not an integer the series

expansions of ¢ cy) valid for y#9,-/-2... can be spplied to evaluste y (’ )

{see e.g. [1) formula (6.4,10)}. Thus /W("/I/‘f [/7'/4/ 9'/6’['1/ ‘([‘l""-" Z)Zé.{”_jf
This 1s bounded from above by a constant independent of / and the same

applies to the remaining terms of l,'o-) (see e.g. [1) formula (6.4.2)].

The terms of '4., are not bounded, but, by a similar argument it can de shown

that they are of the order of O(log/ ) for any fixed x> O [see e.g. (1)

formula (6,3.2) and the recurrence formula (6.3.6)]). Since the values

(39) enter into the J,., -function as the 7th powers at the most the series

. . ‘
(40) 1s dominated by 2 x’(1% ) multiplied by s constant and this still

shows that it is convergent for positive X gsmaller than 1.

3. Probability distribution function of the product of Beta variables.

General Remarks.

3.1 Let the probability distribution function corresponding to the p.d.f.

(5) ve

X
1) BulX s = Limg) / thu-)tat = 30 pg)at

In view of (4) and (11) we have

PR " . N
way M [1-Buirsys =577 (p+9 T (reg) [[Pregees TUPL.

T
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and the inversion formula (2) yields

L)
LY

-§.~/
(w3) -Brfxipigs = Fo i L [( pen/rresevfes | o0

C-/n

It is not possible to simplify the prodlem by reducing the discussion
t0 the one-parameter family of probability distribution functions in the
vay similar to that carried out in section 2,1 for the p.d.f.'s. We have
to investigate the two-parameter family of probability distribution functions
(43) and ve shall again discuss separately the cases of integer and non-integer
9 .
3.2 The case of 1nteu.

Since, for integer ¢ ,
Plreghs) = (pryss-1)(pegri=d. .. (prs) lprs),

(43) becomes
,.,h(/, j_-L COJ“ }
*2 -A
- x u/uw!-k' A , <ro .,
(k) [= But(Xx, 1,9, = r"py znzq/‘f k=o

The integrand has one single pole at S = 0O and i poles of the m th order
at § =-/-p (/= 0,1,...,8=/ ). The integral can be evaluated by contour
integration by the method similar to that applied in the evaluation of
integral (17) [cf. Appx para k). Since the residue st §= O multiplied by

Fnts;/Fr) 18 clearly equal to 1 we have

it e Py
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,':ZQ !/ " , B
3 Z')ff (X ) for 0<x</ ,

(45) Bnl(x,p,9)%
Vi for X»/ ,

» .
vhere R (<'%,/, 1s the residue of the integral sppearing in (Uh) at the n™

order WIQ at § .’/.'P (/.- 0,1,...,"/):

(46) R"["‘ )" L’l'U m*l/l SOy j/—(-/wu-kj ] x
/im)-p

Retaining the notation introduced in formuls (20) we can vrite the

»
function 6 (3)1n the brackets of (46) as

I

7 (47) 6- (5) = X S // /;+.r+/(j

Starting again with the discussion of two simple cases we have for § =1

‘-I

only un¢ residue at j- 0. From (L7) éllj X and

n-r-/ "'U
/Q[-t n{)) (") Z( /X (-log-tj( / Ln-r./j/_( ‘/
s55h
so that x ;_' 7 o= )r -n P
R¥am,00 = = Fx"(—oEx f

n-/ r

.
() By (xip )= x" 2 G (—ioex)

The derivative of the above is equal to
P, N, LR
sntxip 1) xRk ) fx

which agrees vith (22),

ol st i i 5
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For ’, =2 we hsve to consider two residues for / =« 0 and / . 13
R.(‘ M"}"ewy “.., {x $” (puuj f “_/'
a=-/
Y P -
(.z," ’/‘(u-u' 5{7 lx 5 (pes) *j /[: ne-s .

Appiyring the Leibniz Formula for the (n—/ Jth derivetive wu obtain  _, .,
(ki) net-r

50 ’o-)’g-- 133 W5t °3‘)“’) “ra)'s Kaoies Len-ry(rree) .../' =-f,
R¥(%; M) = (hpy? z( 'J{_‘ujx(-mz x)c-') ¢r—£/’1 SN (t»-r-z//ﬁ"/ Jraopet .

Evaluating the ghove at § =-p and § ..ﬁ -/ respective
S" -4 ( / M-l]..n.z)( ') Neret
K4 m) = L""J < ey L-;om,) (ﬁ-lz}. &) L(" =
crek+(2nr2)!

Aol & T’ ]
R4 m, 1) = ’J‘J}.'Z__—_.(r gf (- 10RL) (rky (k) e+ -t € J%,

8o that

(49) Bn(; &) =1 L) Z/" z/z & (=tome X [ o)

The derivative of (49) 1is equal to
3"1n-r—& /! r/ p Al
8,,,[: pi2)= (1) Pl"ljhf;;( il _/r7("'1°8x/¢." rd 7L,

and is equal to ,’i(-u p.2)

rés /

in view of (23) and (14),

Again, as in section 2,2, for higher values of 4 the application of
the Leibniz rule would lead to complicated expressions and ve shall again

evaluate the logarithmic derivative of (47). Here

voa {ki,

e

~ v G
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!
] G/
log 6 (X)= _ $logx - logs-Mn Z log(/’f“/‘/
L2

end the logarithmic derivative of (47) is

s n i L/’*"*I(

»
(50) AJ. (X)=m — log& - rres

vhile the higher derivatives are I
9- -
() -(rty {
) Y - (rﬂj+ n f-’ -4, re/ E L ptdr k/ .

. = { -

Since according to (46) these derivatives are to be taken for JS=z< =/’ |

we have 2 e
6ty = 2 U /’ "4
/ e,
. !- — - b P =t
(52) '4/ (-/_,n/ = =0 J"'P n t;; .’l  /

wer) | (re) » v _o=()
,4)- L—/—/;) ‘- f'. (/"'/vl U -+ nr. E. (t // P

and the final formula for the probability distribution function of the

product is given by

9-/
< /"/ —-(// - % *, ,(-(ml}
AT 20 3‘-—- i
(53) Bnat&) 71 vy = 1) r'l/u z__. P & 7/ e/ "" L/7’ s / J

>
vhere the arguments of -,., - function are given by (52).
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Example, If ¢ = 1, according to (53),

ne!

B”(.Z,'p, ij = {;;T,‘)? XI.Z.-, [(—1og£¢p"'/J Py -2 p

Tr's formuls is, for high values of » , more complicated than (48) but

g Ll

it can be verified thet for n = 2,3 etc,, it is equivalent to (ue),

3.3 The case vhen 4~ is not an integer.

Since ¢ 1is not an integer the integral (L3) cannot be written in
a simpler form as in the case of (LL)., The integrand of (43) has a single
pole at S$= O, and an infinity of poles of the #th order at §= =-pn -,'
( J' = 0,1,...). The integral in (43) can bte evaluated by contour integration
by a method similar to that spplied in the evaluation of the integral of (3i). |

(cf. Appx, pare (k)]. Cince the residue at S = O multiplied by Piress )iy

equals to 1 we have = N
; P <

t /'.. :.
(54) 81(_1,' pPry) = |

( 1 ror x4,
where

csaf S isrglf )
(55) Kem/l = n- ,)/ 4, Z fl ST Uprss(peses ) [Tiprses) . ]
is the residue of the integrand of (43) at the m th-order pole at f=-/ -/
(j=o0...).
4
i e
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Clearly rlssnv/+s)

P(pts) (b+12)) = Postj-)(Perti-2)... (pes) = = I(s *P*/*// // (pesv k)™

-/
vhere again an 'empty' product ”t-:. should be interpreted as unity, Hence

(56) k’{-t; nj)= 0..,) rv/; //'7:4,(»/4-//]-(/»#4&/ /PY/'""‘/}(
AL

Denoting by 6"23} the function in brackets in (56) we obtain:

J"

(57) 6 ()= 8T +y 7-mrwb //’ (Pry+s)

)=
»
log 6'(” = - flocx -logs + hlog/'(rf/u/'u/-nlogf{pf’ﬂ/-lzz-logmﬂ*k/,
*0

The euccessive loga.rithmic derivatives of {UJ are given by

" 8)4 (;) =-ogx -5+ ny(stntjt) ~ ny(,uquy- Z- (/’H'f/'-/

= v . ~eit)
AntﬂgL’)ng,,/I =(rei) "'Y‘( )(.H/)r Hj"‘Y’”?ﬁﬂ[ij#t”)”' 'Z[ﬂ*“k}‘ s

4
and since (55) are to te taken at § =-. -/' we have

.(-,.-//::—J. “ipej) L-u Nl PNy,

(50) A chys = = Loc Xt ¢yl L) T {— k.

A gy = GO TR pr ey ng Tl )+ mr! #""L:'U
and finally PNpegs 1. S X /_,___ [4 Pl ‘
Pspy 0! — M) () )"f"y )k L 4 0casl
(60) Bl nit, = %S
¢ 4 a2 .‘1.'

vhere the arguments of ~“n-i -function are given vy (5¢9).

The convergence of the infinite series (00) follows from & similar

argument as that applied in the case of the infinite series (LO),
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b, Distribution of products of independent random variables having
the same Bets distributions with different scale parameters.

The generalization of the above results to the case important in
practical applications wvhen y s X, ... Ty and the p.d.f. of the
¢ th factor has the p.d.f.
3wz r.y)

is immediate., The p.d.f 4, (y/ of such a product is equal to:

(61) gnly) = G- ¥n S (B @y prg )

and, consequently the probability distridbution function is equal to.
Bh (QI“J"‘ Kn’j /’19’/.
Indeed) since

ML foesafs; = &M fee)is ),

ve have Y

M[gn w)s]= (2. .ay f '"'['M['J(xjn,,;, i
LT e, NNV XYV

I L FRETL TN M['}.(d,ﬂ;---‘kf;'/’/f//‘]
= M"sx,q‘o--“h 3,.(“;“]--“Dya'ﬁl'y//s/l

vhich completes the proof of (61) in view of the uniqueness property of the

Mellin transform (cf. (3), p. 104, Th, 2).
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APPENDIX

(a) The evaluation of the integral (17) by contour integration leading
to formula (18) is achieved in the following way: '
We define two close contours v[;g_ and [A .
vy 4 18 composed of the vertical segment of the integration path of (17)
(1A)  petween c-i4 and c+/4 and of s half-circle &y of radius # lying
+0 the right of this segment and having this segment as its diameter,

Similarly

! /
-G. is composed of the same vertical segment and a half-circle 7‘4. of

radius A lying to the left of this segment and having this segment as

("A)  its diameter. Let also 4 7; 5
ceid A
P‘~~ / ".J ! C.
Contour {4 v 2 Contour {4 R B
[} \ 4 " .'
] ‘\. " ’
' ' : X
' ' Hy N
l... '.‘" “shde-i A
e=1
Figure 1, Figure 2.

Since the integrand of (17)
o=/

Frs)= 27 JT @)

(3A)
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is analytic on the contours [,; and [‘- and its interiors with the
exception of ’, poles inside the contour [A ve have

(4A) {f{x)d! = . f fs)ds = Z"?C* JJ,
vhere 2@:,- n,)) is the residue of f(.u at the pole § = -J (3=0,1,...8-7 ).
It remains only to prove that the integral along the half-circle 7{4 tends
to zero vhen 4 tends to infinity in the case of X > 1 and that the integral
along the half-circle 9'{4: tends to zero wvhen 4 tends to infinity in

the case of 0 < X <1,

(b) Let X 21. Then N
ff(l e / x.-(c+4m¢4hﬂnf/f-((+k+l¢o’+t4/./mfj bie' " df-
/

LA,
‘ J(‘ Y

But in view of cos,t being positive we have .

Jcthk + Acnp+ 4iding|=|(ctk) +2'4(‘*¢/¢"¢¢-4'/ ’A
g-/ .
and the product 77 in (SA) 1s dominated by '4 . Hence
. -hg -¢ - Acng od

(GA) //f(:)d: | < zA / X Adg i

-Aenp L]
Since cos¢ >0 for 0<¢ <72 anda X >/, ~,/ Adp £AT

In view of (6A) the integral along the half-circle tends to zero when A tends

to infinity thus completing the proof of the second line of (18).




Page 28

(¢) Let 0< x <1, Then

[1/,] o 9-/
— 4 4J’ j . . ['
[ fids = J & IO T (ks i biing ) pie Pas
z; 4 kzo

(74)

nut/ crhktAwp+hiing|= L'Zc-f-kj‘-f 2A(ctk)cos g + 41]{

i and this is greater than ,
| [€+k)*~ 2A(CHE) +AY S = Ak | P A-cgtl >4y

since € > 0 could be made less than unity, and it should be borne in

mind that wve have assumed A4 > 9. Hence the product in (TA) is dominated

» ""
by the (#F-¢,, ama T
I 1, Aea | -4‘“’/‘4
(ea) /f f{})d!/ < 2y ") Z /‘ #
X/ *

A
Acn
The integral atove can be vritten .‘/X fl‘dﬁ end since cos g >0

ris
and 0<xX L1 ;sixovs that the left-hand side of (8A) tends to zero

vhen 4 tends to infinity, thus completing the proof of the first linme of (18).

(d) The evaluation of the integral (34) by contour integration leading

to formula (34) proceeds in a similar way. Notice first that the integrand

ris) ]"
fe= x* [f'cwy)

is analytic with the exceptivn of the infinity of poles for § = O,-1,-2....

of (34)

(LA)




——

(104)

(114)

(17A)
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Let X > 1. Then on the contour [A- as defined above by (1lA) we have
Su b+iV yvith w >0 and
res) //‘(Hl) / / r(s+1) /
/ 77}‘;",)/ K (r-rq) S riseg)
But for complex S(see {1],formula 6.1.25) and S of 071,-2....

[r(s)|= T« ,,72_[’ *cf:;m*]_’

so that +
rs+0) / _ [lur) 7/ ./_.-.S‘.‘_"") . < 1,
/F("7/ = Frurg) / (uun-)'-

since with ¢ > 1 all the factors of the iafinite product above are smaller

than unity; hence
rel g Lo
/ r(s+¢4) 1517
by the same argument as that applied to the evaluation of (5A) and (6A)
we see that, for x 21, the integral of (9A) along the half-circle
tends 10 zero vhen A4 tends to infinity thus completing the proof of the

second line of (35).

e g ettt e
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(e) To prove the first line of (35) (for 0 <& < 1) we define a

"
contour { 4 slightly different from that defined by (2A); 1t is shown

in Fig. 3. Let = ; ;
”8 3 A":‘-H-J.’....L.{.’Tc¢4-
{4 be composed of the vertical segment of i i
! I
. ]
( ) the integration path of (34) between c-A t"'.-t E
15 My ;
and <t A/ » Of tvo horizontal segments joining f 1 !
]
in the S -plane points -A##4i with c+ Al |
H i
. . i i
and ~A-A/ with ¢- 4/ and finally of the s e P
. ~h-hi Uv)
vertical segment Joining point -A-A uith Figure 3

-4 + Ai , To avoid the poles of function (CA) we chose a sequence of
A~values as 4 = m+3and ve are going to show that the integral of
(9A) along the path composed of segments marked (1) - (v) 4in Fig. 3

/
tends to zero vhen 4 tends to infinity assuming the values A «mty,
(W\. "2,-'-) .

(£) In the integral along (v) the real part of s = W-4¢ is

positive and by (12A) the integral is dominated ty

(uehi) du e _ L XS
’J fUJd‘l( [.L ‘-;:-:' /( /X r A,n. —IO’Z

c'/
vhich tends to zero when 4 tends to infinity; the same applies to the
integral along (1i).

(8) To show that the integrals along segments (ii), (111), (1iv), vhere

the rcal part of § 1is negative, have the same property notice that for any

ron-integer z (cf. for example (1}, formula 5.1.17),




r
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T
(144) r(z) r(i-z) = Jin(xz) /
so that
-

rf-z2+1) = I(z) in(72)

and
o

/"(‘Z % ,’) = /'/Z-’-#l) fl"l(I(Z—’fl)]

Writing in the above — § for Zz we have
/'[.(4'/) f'[—!-’, +/) I/'n[ﬂ'( -l-,.wj]
(-"‘*9) (-5, $in(-xs)

But in the integrals which we are going to evaluate the real part of -JS
is positive and we can apply (10A) vhich, in viev of ¢ > 1 ylelds

//"(.H/) P /.Jm[vr(—f 9»/)1/
[ FQN;)/ Sn(-ms)

(15A)

(n) In the integral along (i11) JS = -A4+/V and in view of (154)
A iy YAt IPiV) S dur Jin Jl'[__j_fﬂﬂ] av
A-(v 2
| [ [ e B[ < £ VR G e
-A

()u)
¢ * S ] * &
It is known that if Z = k¢/v then [Jimz/ .[Jm " ¢ Jink r/ (ef.

for example (1}, formula &,3.59)

e
80 that

x
[ <5,

/nnl[,r(ﬁ-yﬂ/].; Jink V‘/ e
Jin{nA) + vink*r7 o
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! g
Recalling that 4 = M* 1 ve have 44 o1 and the integrand above
4 -
is not greater than unity; the integral is dominated by 2x /4“ 'which

tends to zero vhen 4 tends to infinity.

(1) In the integral along (iv) JSw u-/A and
o =i M) /’"‘ wu-CA+) ol

[ finas = _{" F(u-idrg) (-A)"

{w)

In view of (15A) this is dominated by

/o.t-.'/ ﬂ“[ﬁl-a ’*/f‘ﬁ)] ;d‘va. “Ya
A Jinfr(-u+ )] | (a**4Y) 'y J# unkH %
1 (0w Jintw(ang 1) + SinA AT / Y T

< /t"_/ t [T r ImAS AT

., [ E o £
e J/uk' -logx

and this tends to zero when '4' tends to infin!ty; the same applies to

the integral along (ii).

[}
(J) when A « m* % the contour includes in its interior m+ 1 poles

of function (9A) and with m tending to infinity the integral (34) is equal to

uff/j h'm Z.R(* n,)

mFoo J o
which is the infinite convergent series (L0).

(k) The evaluation of integral (LL) by contour integration proceeds
in a similar way as that of integral (17) and of integral (43) (in the case
of 7, not being an integer) in a similar way as that applied in the
evaluation of integral (34)., In fact the task is easier with the additional

factor \S—' appearing in the relevant integrals.




Sumary

The important problem of finding the probability density function of
the product of a number of independent identically distributed random
veriables was investigated by Springer and Thompson (8], [9]) who, by the
application of the Mellin transform, obtained the answer in the case of
the normal and the Cauchy random variables. Further discussion by the
author of this report (7] has drawn attention to the fact that the results
obtained by them are easily applicable to the cases of exponential, gamma
and Weibull distridbutions and that the probability distribution functions
can be also obtained directly hy the application of the Mellin transform
without integrating the relevant formulae for the probebility density

funztions.

In the present paper it is shown how these methods can be applied

to the study of beta random variables; this is of practical importance

since most physical devices with whicl. en engineer is dealing have finite
characteristics and the results discussed in (8], (9], (7] were mainly

concerned with randem variables having infinite ranges,




Bidbliography

(1) Abremowitz M, and Ste I. (eds), Handbook of Mathematical Functions,
Dover Publications lf‘uc. , New York, 1965.

(2) Bateman Manuscript Project, Tables of Integral Transforms, Vol. 1,
California Institute of Technology, McGraw M41ll1l Book Co. Inc.,
New York, 1954,

(3] Courant B. and Hilbert D., Methods of Mathematical Physics, Interscience
Publishers Inc., New York, 1953.

{4] Donahue J. D., Products and Quotients of random variables and their
applications, Office of Aerospace Research U.S.A.F., 196L,

(5] Epstein B, "Some applications of the Mellin Transform in statistics”
Ann, Math, Statist., 19, 370-379, 1948.

[6] Kotlarski I., "On random variables whose quotient follows the Cauchy
w , con. Matho’ 7’ 277‘28“’ 1%0

(7] Lomnicki Z, A. "On the distribution of products of random variables",
J. Roy. Statist. Soc. Series B (in print), 1967.

(8] ringer M, D. and Thompson W, E.,, The distribution of products of
independent random variables, General Motors Defense Research
Laboratories, Mathematics and Evaluation Studies Department,

Santa Barbara, California, 1964,

(9] ringer M, D. and son W, E,, The distribution of products of ,'
independent random variables, SIAM Journal on Applied Mathematics,

lh’ m-526, 1%60

(10) Zolotarev V, M, "Mellin Stieltjes Transforms in probability theory",
Teorya Veroyatnostey i ee Primenenya, 2, LkL-L69, 1957. '




T T T TR

e

Sevunty Cluanification

DOCUMENT CONTROL DATA - R & D j
Moty cavaibication of Htle, by od b tiact and dtalesing sttty muct b ontered when the avorall teport is o lassiliod)
COONCL It A it A Tt (L otpatale muthor 8. MEPOMY REC Uty CL ASSIEIC AYION
. Unclassified
Laborstory of Statistical Research id
h GHOU

Department of Mathematics
niversity of Waahington, leattle, Wash. 98105

TR BN LN e X T A I O |
On the distribution of products of independent Beta variables
4 Dt tive NOTES (Type of teport »d anchi: datea)
Technical Report No. 50, September 15, 1967
s AU THOH S (Firel name, middie initial, a8l name)
Z. A, Lomnicki
6 HEFOMY (JATY 8. TOTYAL NO OF PPAGES 6. NO OF REVFS
September 15, 1767
8e CONTHACT OR GHANT NO %8, ORIGINATOR'S AEPONRT NUMBL RI(S)
N-onr-477(58)
h PHOIFCT NO -
NR+OL2038
« \ b OTHER REPORT nOIS) (Any other numbere that! may be sssigned
thies report)
d

1 DISTRIBUYION STATEMENT

Qualified rcquerters may obtain copies from LDC

11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

U. S. Navy

Office of Naval Research
Washington, D, C.

19 ADSTHACT

The problem of finding the probability distritution of & product
of a number of identically distributed, independeni random variasbles had been
:clved by an application of the Mellin transform for normal and Cauchy distribu-
tion- (Springer and Thompson) and for exponential, Gamma and Weibull distributions
(iomnicki). The present paper shows that it can te soived by ~imilar meothods fer
pote distributions, This 1s of rracticel importence, -ince most physical quantitie:
with which an cng%neer is denling have finite range:, while all the distributinng

rreviously studied had infinite ranges.

DD "2V..1473 (PAce 1) ’

S/N 0101-807-6811 Security Classification
A-21400 /

AT AN

.




Security Classification

Y AOHDS

Litde A Litr 0

W Ie C

HO Lt LI O E »

Lt

products of random variables
quotients of random variables
series-systems
system-reliability

Mellin transform

DD SFom 1473 tian

]

S

Sccunity Classification




